Radiant Barrier - Anyone have it in their homes?

Search

USERNAME OFFICIALLY RETIRED
Joined
Nov 29, 2004
Messages
5,150
Tokens
Have you really noticed a huge difference?


<object width="425" height="344"><param name="movie" value="http://www.youtube.com/v/A4OaupFYxrM&hl=en&fs=1&"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/A4OaupFYxrM&hl=en&fs=1&" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="425" height="344"></embed></object>
 

I'll be in the Bar..With my head on the Bar
Joined
Oct 3, 2004
Messages
9,980
Tokens
The only people who would see a "huge" differance would be people in extreme heat situations that also have very poorly insulated attic space. Otherwise savings will probably be somewhere between 5 and 15% tops, still only in extreme heat.........above the mason-dixon ,etc, the effect may be minimal to none....




The Oak Ridge National Laboratory (ORNL) has performed a series of tests using three full-size houses near Knoxville, Tennessee. The ORNL tests included summer and winter observations. So far, very little testing has been done in climates colder than that of Knoxville. Also, little testing has been done in hot, arid climates such as the southwestern United States.

The tests to date have shown that in attics with R-19 insulation, radiant barriers can reduce summer ceiling heat gains by about 16 to 42 percent compared to an attic with the same insulation level and no radiant barrier. These figures are for the average reduction in heat flow through the insulation path. They do not include effects of heat flow through the framing members. See Tables A1 and A2 in the Appendix for a comparison of measured performance.

THIS DOES NOT MEAN THAT A 16 TO 42 PERCENT SAVINGS IN UTILITY BILLS CAN BE EXPECTED. Since the ceiling heat gains represent about 15 to 25 percent of the total cooling load on the house, a radiant barrier would be expected to reduce the space cooling portion of summer utility bills by less than 15 to 25 percent. Multiplying this percentage (15 to 25 percent) by the percentage reduction in ceiling heat flow (16 to 42 percent) would result in a 2 to 10 percent reduction in the cooling portion of summer utility bills. However, under some conditions, the percentage reduction of the cooling portion of summer utility bills may be larger, perhaps as large as 17 percent. The percentage reduction in total summer utility bills, which also include costs for operating appliances, water heaters, etc., would be smaller. Tests have shown that the percentage reductions for winter heat losses are lower than those for summer heat gains.

Experiments with various levels of conventional insulation show that the percentage reduction in ceiling heat flow due to the addition of a radiant barrier is larger with lower amounts of insulation. Since the fraction of the whole-house heating and cooling load that comes from the ceiling is larger when the amount of insulation is small, radiant barriers produce the most energy savings when used in combination with lower levels of insulation. Similarly, radiant barriers produce significantly less energy savings when used in combination with high levels of insulation.

Most of the field tests have been done with clean radiant barriers. Laboratory measurements have shown that dust on the surface of aluminum foil increases the emissivity and decreases the reflectivity. This means that dust or other particles on the exposed surface of a radiant barrier will reduce its effectiveness. Radiant barriers installed in locations that collect dust or other surface contaminants will have a decreasing benefit to the homeowner over time.

The attic floor application is most susceptible to accumulation of dust, while downward facing reflective surfaces used with many roof applications are not likely to become dusty. When radiant barriers are newly installed, some testing shows that the attic floor application will work better than the roof applications. As dust accumulates on the attic floor application, its effectiveness will gradually decrease. After a long enough period of time, a dusty attic floor application will lose much of its effectiveness. Predictive modeling results, based on testing, suggest that a dusty attic floor application will lose about half of its effectiveness after about one to ten years.
 

Forum statistics

Threads
1,108,215
Messages
13,449,520
Members
99,402
Latest member
jb52197
The RX is the sports betting industry's leading information portal for bonuses, picks, and sportsbook reviews. Find the best deals offered by a sportsbook in your state and browse our free picks section.FacebookTwitterInstagramContact Usforum@therx.com